On distributions of sentence lengths in Japanese writing

Motohiro Ishida, Tokushima Kazue Ishida, Tokushima

Abstract. The lognormal distribution had long been thought to be the most appropriate probability distribution for Japanese sentence length distributions. Yet this view had been supported only by few researches with sparse sampling data and reasoning contradicting language reality. In order to show a more realistic approach, we analyzed a substantial number of samples. At first, 150 essays and short stories were drawn as a random sample, out of which any pieces of writing whose length was either less than 100 or more than 1000 sentences were excluded. As a result, 113 pieces remained as sample texts. We also paid attention to the kinds of sentences, separating those of dialogue from narrative ones. From each one of these 113 sample texts, three sentence length frequency distributions were acquired – the first one for a complete text, the second one for the collection of direct speech in the same text, and the third one for all the narrative parts excluding direct speech above. The results completely overturn the long-standing belief, proving that a lognormal distribution – which has been computed but will not be shown here – can never be well applied to Japanese sentence length distributions. Our new findings indicate that in place of this lognormal distribution, the Hyperpascal distribution maintains an excellent goodness of fit.

Keywords: Sentence length, Japanese

1 Introduction

It has already been forty years since Yasumoto (1965, 1966) analyzed twenty sentences from each of 100 Japanese novels, judging that Japanese sentence lengths correspond either with a lognormal distribution or with a gamma distribution. Sasaki (1976) also examined 1500 sentences in total which were evenly extracted from three Japanese novels. The result was to corroborate Yasumoto's conclusion, with one of the three novels following a gamma distribution and the other two following a lognormal distribution. There is one more article in which Arai (2001) argues, with some of the literary works by Ryunosuke Akutagawa and Osamu Dazai as samples, that Japanese sentence lengths follow a lognormal distribution. In Europe and America, on the other hand, studies of the same kind have been conducted (Yule 1939; Williams 1940; Fucks 1968; Sichel 1974, 1975; Sigurd and Eeg-Olosson 2004; Kjetsaa 1978; Altmann 1988, 1992; Grotjahn and Altmann 1993; Niehaus 1997; Strehlow 1997; Wittek 1995; Kelih and Grzybek 2004, 2005; for more literature see http://lql.uni-trier.de). They have attempted to find models of sentence lengths in English, German, Chinese, Russian, Classical Greek, and Slovak, and used the negative binomial distribution, the Hyperpascal distribution, the Hyperpoisson distribution, a modified positive Poisson distribution, a compound Poisson distribution, and the lognormal distribution respectively. On the basis of this preceding research, we have analyzed all the sentences of 113 works by thirty-six Japanese writers. The result of our investigation into Japanese sentence length distributions follows.

Before we present the data, some theoretical preliminaries should be reviewed. The lognormal distribution has been introduced into linguistics on physical grounds. Since in the nature many phenomena are normally distributed, the first researchers supposed the same would hold for language. But "normality" contradicts the self-organisatory character of language, and in most cases also its self-regulatory character. The *speakers* try to render every entity as easy for them as possible (memory effort, coding effort, production effort, etc.). They try to adapt the language to their own needs. Hence everything must be skewed, deviating from "normality." It is the self-regulation (exerted by the *hearer*) that stops great deviations and "pulls" them back again, but never to the "normal" state, because language must develop. Thus non-normality is the natural state of any linguistic phenomenon. The first researchers realized this fact but in an attempt to maintain the connection to physics, they modified the normal distribution in a way which is very popular in many sciences: they performed a logarithmic transformation yielding a skew distribution which could hold for many different data. But so far, this has no linguistic foundation. Besides, in linguistics one tries to fit discrete distributions to discrete data, but this is no great problem because parallel discrete and continuous distributions can be converted into one another (cf. for instance, Mačutek and Altmann 2007). We see the same endeavor with the gamma distribution, which represents a sum of squared normal distributions. This is, however, a special case of Pearson's Type III distribution.

A slightly better way is to consider sentence length to be arising from a Poisson process with a constant coefficient leading to the Poisson distribution, regarding the coefficient *a posteriori* as a variable. However, the last step is not completely arbitrary. Sichel considered the parameter of the Poisson distribution to be following a generalized inverse Gaussian distribution (containing a very flexible Bessel function) but never gave reasons for this decision. It is more realistic to use a very simple distribution, namely the gamma distribution – remembering the skewed normality – and obtain

Poisson d. (λ) \bigwedge_{λ} gamma d. (k, q/p)

yielding the usual negative binomial distribution, which is an acceptable result because it can be substantiated in different ways.

In this study we shall try to apply the synergetic way of modelling sentence length.

2 Sample Texts and Analytical Methods

2.1 A measurement unit of sentence lengths

In present-day Japanese, what is called "kuten" is usually used to mark the end of a sentence, in the same way as a full stop or period in English. This "kuten," or the Japanese equivalent of a period, can be omitted in dialogue or in the written form of a conversation, where the second quotation mark of a pair is to terminate a sentence. This quotation mark is also used as a way of emphasizing a word, as with "kuten" in the first and second line of this paragraph. If we regard the word as the counting unit of sentence length, in languages using Latin or Cyrillic script, the analysis is much easier than in Japanese, because in these languages the word is separated from the next one by a single space. One can easily extract the number of words in a sentence, and the number thus obtained is directly equal to the length of that sentence. Japanese, on the other hand, uses two syllabic and one logographic script, in which

words are never separated by whitespace within a sentence, and several individual morphemes are intricately linked with strict rules. In this case, the morpheme (instead of the word) could be regarded as a secondary unit of sentence length, and a sentence should be resolved into morphemes in the first place. One of the outstanding application programs for morphological analysis of Japanese is "ChaSen."¹ Figure 1 illustrates how "ChaSen" morphemically analyzes a Japanese sentence, "Watashi-ha-sono-hon-wo-yonda," meaning I have read the book. The output consists of four columns, the first one on the left showing the exact forms of morphemes that appear on the paper, the next one showing their pronunciations in Roman letters, the third one showing the basic forms of their morphemes, and the last one showing what part of speech each morpheme belongs to. "ChaSen" enjoys high accuracy in its analysis, but it is not always wholly reliable and from the linguistic point of view it is a hybrid analysis. For instance, note that "sono" in fact consists of two morphemes from a diachronic viewpoint (cf. sono, kono, ano in which the morphemes can be separated in the same way as in German articles *d-er*, *d-ie*, *d-as*); and "yonda" consists of the verb "yom(u)" and the past affix. But even if we accept the given analysis, sometimes it can provide false results. To make matters worse, Japanese has more compounds than many European languages. For example, Japanese equivalent of "lognormal distribution" is "taisuseiki-bumpu." This compound consists of three words, "taisu" meaning "logarithm" or "log," "seiki," "normality," and "bumpu," "distribution." This compound, a little controversial, can be regarded either as one word representing one concept (cf. the German "Lognormalverteilung") or as three words (as in Slavic languages), or even as two, "taisu," "log" and "seiki-bumpu," "normal distribution." Incidentally, "ChaSen" treats this compound as three words.

私	watashi	私	noun (1)
は	ha	は	particle
その	sono	その	definite article (the)
本 を	hon	本	noun (book)
を	WO	を	particle
読ん	yom	読む	verb (read)
だ	da	だ	aux. verb (have)

Figure 1. The output of ChaSen's morphemic analysis: "I have read the book"

We are aware that the length of a linguistic unit should be measured in terms of the number of its immediate constituents, in our case, clauses. But for Japanese there are no programs of this kind and computational linguists do not care for this aspect of sentence structure. Thus the complete analysis of all texts must be done with pencil and paper. On understandable grounds we shall evade such a procedure. The other way to get the length of a Japanese sentence mechanically is to count up the number of characters, or letters, instead of morphemes, using a character as the minimum constituent of a sentence. In this way, we can avoid the possible mistakes and ambiguities of a morphemic analysis. Naturally enough, previous studies have adopted the number of characters in their analyses. Here we must take note of the fact that even this approach has two problematic aspects. One is that a Japanese character can be either

http://chasen.naist.jp/hiki/ChaSen/

an independent morpheme in itself, or a mere mora as in most cases. The second one is that Japanese has three different writing systems, *hiragana*, *katakana*, and *kanji*. An English word, "horse," can be written in three ways. In Figure 2, all three symbols adjacent to "horse" have the same pronunciation, "uma," conveying the same concept of "horse." The first two forms of the *kana* writing system have the same number of characters, but the third one has only one character. These equivalents for "horse" which are to be differently distributed might appear in one and the same Japanese sentence. Sentence length should be a fixed (invariant) quantity. In this sense, the fact that a choice of a writing system would possibly have a significant influence on the sentence length distribution simply casts doubts on the validity of the character as a counting unit. There is one more possibility to be taken into consideration: the phoneme. But phonemes are not immediate constituents of sentence and the support of the random variable "length" would contain so many values that many of them would have the frequency zero. This automatically leads to a senseless multimodal distribution having no relevance to the analysis.

horse うま ウマ 馬 Figure 2. The three ways of writing "horse" in Japanese

In collecting data on Japanese sentence lengths, there is one further question other than the selection of a measurement unit: It is the question of whether dialogue can be analyzed in the exactly same way as narrative. Mizutani (1957) pointed out that both description and dialogue in literary works have their own distributions and parameters, for example, the former following a normal distribution, and the latter, a gamma distribution. This is, however, Mizutani's mere speculation, not verified by any further experiments and, as said above, the first approximation of a kind.

Having taken into account all problematic elements, we have examined a considerable number of Japanese writers' works. This time we have relied upon "ChaSen" automatically measuring all the sentence lengths of each entire text, and the number of each-sentence morphemes resulting from its analysis has been employed without any alteration. Using the theoretical approaches of G.K. Zipf (1949) and his followers in later years, we conjectured that there should be a kind of self-regulation of sentence lengths connecting the neighbouring classes by a proportionality function (cf. Altmann and Köhler 1996), i.e.

$$(1) \qquad P_x = g(x)P_{x-1}$$

Here g(x) = f(x)/h(x). Now, f(x) can be interpreted as the (diversification) force of the speaker, his subconscious endeavour to make his speech production as easy as possible. However, taken to an extreme, this would destroy any communication. Thus this self-organizing force must be controlled by the hearer (or the community), by a self-regulating function h(x). Both must be constructed in such a way that the probability distribution converges. In a simple and very general case we let f(x) = a + bx and h(x) = c + dx. Inserting them in (1) we obtain

(2)
$$P_x = \frac{f(x)}{h(x)} P_{x-1} = \frac{a+bx}{c+dx} P_{x-1} = \frac{(a/b+x)}{(c/d+x)} \frac{b}{d} P_{x-1}$$

Replacing a/b = k-1, c/d = m-1 and b/d = q (0 < q < 1) we obtain (k and m must fulfil some special conditions)

(3)
$$P_x = \frac{k+x-1}{m+x-1}qP_{x-1}$$

Solving this simple difference equation we obtain the Hyperpascal distribution

(4)
$$P_x = \frac{\binom{k+x-1}{x}}{\binom{m+x-1}{x}} q^x P_0, \qquad x = 0, 1, 2, \dots$$

where $P_0^{-1} = {}_2F_1(k, 1; m, q)$ and F(.) is the hypergeometric function. It has been shown (cf. Altmann 1988) that this distribution is adequate if sentence length is not measured in terms of the number of immediate constituents, whereas in terms of that of clauses, the negative binomial is adequate. The Hyperpascal distribution builds a family, some members of which (Poisson, geometric, Katz family, shifted logarithmic, Hyperpoisson, Waring, Yule etc.) are employed in different domains of linguistics. And it is interesting to see that its continuous counterpart is Pearson's Type III distribution, i.e. the generalized gamma distribution (cf. Mačutek and Altmann 2007). Thus using special kinds of gamma distribution is a continuous approximation to the solution of the problem. In both cases (discrete or continuous), we must perform an *a priori* pooling of classes for shorter texts because many classes are represented very insufficiently. Pearson Type III would require numerical integration with optimization, while a ready made software will be available, if one decides to work with the Hyperpascal.

Consider the data "aitobi3 [Osamu Dazai's Ai to Bi nitsuite]" presented in Table 1. As can be seen, the individual classes are not sufficiently occupied, thus a number of modes are present and the fitting of any discrete distribution would be rather a very raw approximation. The data is presented graphically in Figure 3. In a situation like this, one usually pools some classes in order to obtain expected values at least greater than 1. This can be done either before or after applying a theoretical distribution. We shall do it before the analysis. We first choose an interval of three values, i.e. pool the classes 1-2-3, 4-5-6, 7-8-9, ...and let the class be represented by its mean, i.e. X = 2, 5, 8, 11, 14,.... Then we define a new variable, x = (X - 2)/3 whose support is x = 0,1,2,3,... Filling the frequency values in the given intervals, we obtain a smoothed distribution presented in Table 2. The expected values of the Hyperpascal distribution are shown in the third column of Table 2 and a graphic picture of the fit is shown in Figure 4. It can be inferred that greater smoothing intervals would lead to a still better fitting.

X	f(X)	Х	f(X)	Х	f(X)	Х	f(X)
1	1	26	1	51	0	76	0
2	0	27	0	52	0	77	0
3	8	28	4	53	1	78	0
4	9	29	1	54	0	79	0
5	3	30	1	55	0	80	0
6	21	31	1	56	1	81	0
7	10	32	4	57	0	82	0

Table 1 The raw data of the file "aitobi3"

		Sentenc	e length dis	tribution in .	Japanese		33
8	14	33	1	58	0	83	0
9	6	34	1	59	0	84	0
10	7	35	0	60	0	85	0
11	8	36	0	61	0	86	0
12	6	37	0	62	0	87	0
13	5	38	0	63	0	88	0
14	6	39	1	64	0	89	0
15	6	40	0	65	0	90	0
16	3	41	1	66	1	91	0
17	5	42	1	67	0	92	0
18	1	43	1	68	0	93	0
19	3	44	0	69	0	94	0
20	1	45	0	70	0	95	0
21	0	46	0	71	0	96	0
22	3	47	1	72	0	97	0
23	1	48	0	73	0	98	0
24	6	49	0	74	0	99	0
25	0	50	0	75	0	100	1

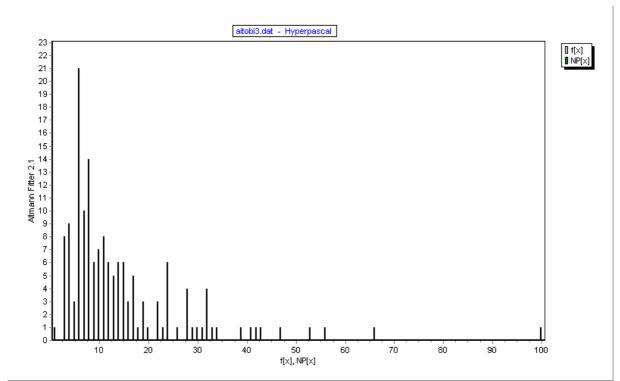


Figure 3. Raw data of sentence lengths in the file "aitobi3 [Ai to Bi nitsuite]"

 Table 2

 Smoothed data and the theoretical values

Х	f(x)	NP(x)	Х	f(x)	NP(x)	Х	f(x)	NP(x)
0	9	8.48	12	1	2.09	24	0	0.08
1	33	29.86	13	2	1.60	25	0	0.06
2	30	25.94	14	1	1.22	26	0	0.05
3	21	21.07	15	1	0.93	27	0	0.03

34			М. 1	shida, K. I	Ishida			
4	17	16.71	16	0	0.71	28	0	0.03
5	9	13.09	17	1	0.54	29	0	0.02
6	7	10.17	18	1	0.41	30	0	0.02
7	10	7.87	19	0	0.31	31	0	0.01
8	1	6.06	20	0	0.24	32	0	0.01
9	6	4.66	21	0	0.18	33	1	0.03
10	6	3.57	22	1	0.14			
11	1	2.74	23	0	0.10			
k = 0.202	6, $m = 0$).0434, q	= 0.7536,	$X^2 = 12$	2.35, DF	T = 13, H	P = 0.50	

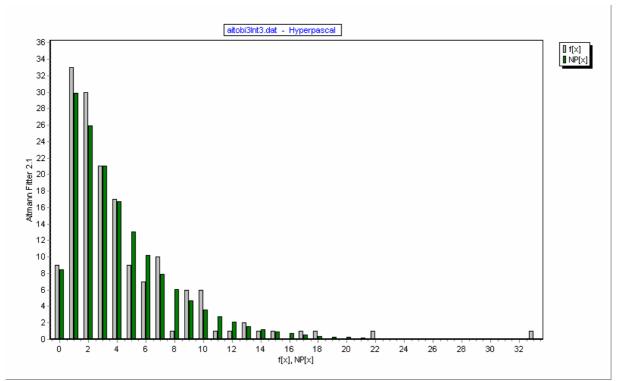


Figure 4. Fitting the Hyperpascal to smoothed data

The results of fitting the Hyperpascal to all data analysed in morphemes are presented in Table 3. We preferred three kinds of intervals: 3, 5, and 7, though using other ones perhaps a still better fitting could be achieved. Actually we tried 9 and 11 besides, in a few particular cases of either direct speech or narrative as we shall see later in Table 4 and 5. But our aim was not to show exactly how a given text must be prepared in order to obtain a perfect fit. Rather we try to show that Japanese sentence lengths measured in the traditional way accord with Sherman's law resulting in the Hyperpascal distribution (Altmann 1988). The significance level has been fixed at $\alpha = 0.01$.

Table 3Fitting the Hyperpascal to sentence lengths measured morphemically: complete texts
(Intervals 3, 5, 7) (FF – fitting failed)

Writer	Text	Size	K	М	Q	DF	X^2	Prob	Interval
akutagawa	giwaku	276	0.1035	0.0567	0.8013	18	31.75	0.02	5
akutagawa	jigokuhen	526	0.6193	0.1744	0.8656	34	50.86	0.03	3
akutagawa	kaikano	298	FF						

.1	1	222	EE		1	1			
	kage	333	FF 9.4345	2 0 1 0 1	0.5092	15	18.28	0.25	3
U	kataki kuranosuke	285 218	7.5058	2.9191 1.1591	0.5083	15 9	5.13	0.23	5
	oritsuto	<u>218</u> 965	2.8834		0.3011	9	12.74	0.82	5
U	rashom	160	2.8834 FF	0.8834	0.4200	9	12.74	0.17	3
U				0.2441	0.4200	7	16.22	0.02	5
akutagawa	umano ishino	374	1.8397	0.2441	0.4299		16.33	0.02	<u> </u>
ango arishima	chiisaki	322	0.1787	0.0515	0.7347	13 18	14.75 20.73	0.32	3
arishima	hitofusano	300 177	2.6558 1.3649	0.7654	0.6784	10			5
arishima				0.3644 0.0467	0.6086		8.18	0.61	5
	kajito	307	0.1623		0.6583	10	5.11	0.88	5
arishima	oyako	560	1.3034	0.2893	0.6048	13	10.16	0.68	5
arishima	kankan	303	1.7041	0.4752	0.6154	13 7	11.81	0.54	<u> </u>
dazai	aitobi	454	0.5679	0.4472	0.5542	-	13.56	0.06	
dazai	joseito	988	0.2281	0.1188	0.8016	25	39.86	0.03	3
dazai	kamome	460	0.0384	0.0223	0.5159	6	8.61	0.20	7
dazai	kirigirisu	301	0.3302	0.0738	0.7120	14	12.03	0.60	5
dazai	kotenfu	444	0.3418	0.1386	0.7251	15	27.93	0.02	3
dazai	merosu	471	0.1721	0.0532	0.5046	6	3.59	0.73	5
dazai	oto	159	0.8497	0.5280	0.7471	13	17.81	0.17	3
dazai	sado	560	0.1395	0.0489	0.5015	6	9.99	0.13	5
dazai	ubasute	608	FF						
dazai	osan	212	FF						
dazai	kashoku	696	FF	0.00004	0.5010	10	10.40	0.00	
hashimoto	chizu	378	1.0635	0.03384	0.5919	10	13.48	0.20	7
hirabayashi		437	0.9106	0.3076	0.6612	14	5.86	0.97	5
hojo	gantai	192	2.2442	1.0185	0.6434	12	7.80	0.80	5
hori	seikazoku	435	1.1506	0.3388	0.7521	21	34.53	0.03	3
hori	tabino	225	0.2257	0.0668	0.7530	15	15.73	0.40	7
hori	hanao	382	FF	0.6005	0.6505	1.4	16.00	0.01	
hori	banka	312	1.6980	0.6295	0.6597	14	16.00	0.31	5
hori	hono	242	0.2175	0.0609	0.8409	21	17.89	0.66	5
itakura	goshiki	568	1.7728	0.3777	0.5854	13	14.76	0.32	3
itakura	haruno	217	6.9692	0.6865	0.2053	4	1.55	0.82	5
itakura	yamato	331	0.5303	0.1434	0.6014	9	12.33	0.20	5
ito	hamagiku	342	2.1256	0.3238	0.4731	9	4.02	0.91	5
ito	koroku	281	2.0073	0.3486	0.6579	16	13.87	0.61	3
ito	kyonen	466	FF						
ito	nanako	283	1.3859	0.1809	0.5288	9	3.91	0.92	5
ito	nogiku	975	0.5316	0.1260	0.5578	10	8.10	0.62	7
kajii	deinei	242	2.3732	0.4015	0.4458	7	8.77	0.27	5
kajii	fuyuhae	330	2.3847	0.5663	0.6403	16	12.28	0.72	5
kajii	koubi	193	11.9507	1.4538	0.2232	6	13.27	0.04	5
kajii	remon	142	0.6119	0.0727	0.7874	17	19.75	0.29	3
kajii	setsugo	277	0.2736	0.1301	0.7295	14	17.01	0.26	3
katai	ippei	511	1.9371	0.4552	0.3933	6	4.96	0.55	5
katai	shojo	266	0.4783	0.2250	0.7607	16	9.71	0.88	5
katai	tokoyo	635	0.8703	0.2359	0.7332	20	18.55	0.55	3
kikuchi	emu	268	2.6557	1.0129	0.4489	6	2.97	0.81	7

M. Ishida, K. Ishida

				,					
kikuchi	seni	297	5.1167	0.3295	0.2304	5	6.65	0.25	7
kikuchi	shimabara	404	0.0394	0.0204	0.7450	15	18.34	0.25	5
kikuchi	shusse	228	0.9690	0.1952	0.5241	7	6.24	0.51	7
kikuchi	wakasugi	221	17.7068	1.0198	0.1526	6	5.30	0.51	7
koda	shonen	114	0.1233	0.0110	0.8329	17	20.18	0.27	5
kuroshima	ana	435	2.0282	0.5573	0.6166	14	14.24	0.43	3
kuroshima	dempo	216	0.5852	0.2358	0.6399	10	9.13	0.52	5
kuroshima	mogura	654	4.3585	0.7056	0.3205	7	13.70	0.06	5
kuroshima	mon	166	0.9769	0.1241	0.3403	3	3.79	0.28	7
kuroshima	nusumu	364	2.7890	0.3142	0.2367	3	1.11	0.77	7
kuroshima	sato	167	0.3650	0.1321	0.5824	7	1.68	0.98	5
kuroshima	tongun	252	1.6990	0.2883	0.4819	8	9.23	0.32	5
kuroshima	zensho	316	1.9027	0.5389	0.3649	5	1.99	0.85	7
makino	tsurube	361	FF						
makino	kinada	279	1.7881	0.7121	0.6357	12	10.28	0.59	7
minakami	yamanote	387	0.5858	0.3683	0.7696	18	13.90	0.74	5
mishima	hashi	359	0.8802	0.3009	0.5449	8	8.83	0.36	7
miyamoto	akarui	297	1.6922	1.3023	0.7606	17	28.31	0.04	3
miyazawa	karasu	165	0.2216	0.1312	0.7984	16	18.01	0.32	3
murai	sobano	179	1.6458	0.1299	0.7071	18	33.89	0.01	5
oda	osaka	164	0.2717	0.0734	0.7978	16	29.21	0.02	5
oda	keiba	231	0.1659	0.0387	0.7543	15	24.77	0.02	7
ogai	futarino	412	34.5950	1.1263	0.0548	4	8.57	0.05	7
ogai	asobi	373	2.9731	0.4692	0.0310	4	1.77	0.78	7
ogai	shokudo	193	53.72	4.3131	0.0817	5	5.05	0.41	7
ogai	niwatori	762	6.6721	1.1193	0.1941	4	4.07	0.40	7
ogai	kazui	271	0.4945	0.1427	0.5723	8	6.69	0.57	7
okamoto	karei	286	1.1520	0.3446	0.7406	18	12.74	0.81	3
okamoto	kingyo	830	1.5109	0.6276	0.5896	12	20.43	0.06	7
okamoto	rigyo	171	0.6448	0.2775	0.7991	19	19.11	0.45	3
okamoto	sushi	366	0.8861	0.2568	0.6546	13	14.82	0.32	5
okamoto	tokaido	378	0.0820	0.0438	0.6949	12	11.02	0.52	7
sasa	kikansha	217	20.0666	0.5214	0.0542	2	0.73	0.70	7
sasa	midori	127	1.3497	0.3012	0.6031	10	12.79	0.24	5
shimazaki	shishu	316	0.8158	0.1699	0.7545	20	21.55	0.37	3
shimazaki	namiki	373	0.2725	0.0881	0.6094	9	6.85	0.65	5
shimazaki	fune	354	2.9653	0.5659	0.4660	9	12.08	0.03	5
shimazaki	mebae	881	2.1641	0.3037	0.4824	9	3.56	0.21	5
shimazaki	bumpai	497	0.8753	0.3177	0.5588	9	7.76	0.56	7
shiraki	saite	236	0.6287	0.1199	0.7862	20	23.21	0.28	3
soseki	buncho	411	0.8648	0.0818	0.4942	8	4.31	0.20	5
soseki	hennaoto	110	0.0692	0.0158	0.7292	10	6.76	0.85	5
soseki	sakubutsu	183	0.0463	0.0070	0.7292	10	6.37	0.75	5
soseki	kotonone	776	1.2049	0.3660	0.7323	12	1.96	0.90	7
soseki	tegami	263	0.6802	0.2308	0.6347	10	10.31	0.90	7
	ogon	439	20.3908	1.7829	0.0347	6	11.73	0.41	5
suzu takiji	haha	294	0.2951	0.1829	0.7342	14	10.90	0.07	5
· · · · ·			19.5497						3
takiji	yukino	739	17.347/	8.2619	0.3997	12	9.88	0.63	3

36

Î.	1.	400	0.05(1	0.0051	0.5004	10	10.11	0.41	-
unno	daino	489	0.9564	0.2851	0.5884	10	10.41	0.41	5
unno	kagaku	114	0.6669	0.1175	0.5556	6	1.81	0.94	7
unno	kibutsu	466	1.2499	0.4762	0.4860	7	7.58	0.37	7
unno	neon	408	1.1334	0.4731	0.5099	7	9.91	0.19	7
unno	tsuki	505	0.0921	0.0394	0.8025	22	28.00	0.18	3
watanabe	uso	300	0.2824	0.1313	0.6904	12	7.11	0.85	5
watanabe	akai	197	2.0690	0.5612	0.5421	9	7.80	0.55	5
watanabe	aruhaha	193	2.8232	1.0305	0.4449	6	9.30	0.16	7
watanabe	shohai	298	0.5499	0.1965	0.6890	12	9.22	0.68	5
yamada	musashino	351	0.3253	0.1736	0.8413	26	21.01	0.74	3
yamashita	ruten	116	1.2913	0.0707	0.6484	12	16.08	0.19	5
yokomitsu	kikaiy	244	FF						
yokomitsu	jikan	150	3.6477	0.6335	0.6743	18	19.59	0.36	7
yumeno	koko	439	1.3923	0.4764	0.6191	12	14.53	0.27	5

As can be seen, out of 113 texts 103 could be captured by the Hyperpascal. Even the residual 10 data could be captured if we attempted a different priori pooling, but this is no more than a question of principle. Sometimes we even left smaller intervals if the fitting was significant. We did not try to achieve "the best fit." We rather scrutinize the problem of distinguishing between dialogue and narrative parts. Table 4 contains the same texts, showing the result of direct speech, and followed by Table 5 showing that of narrative. However, there is a problem associated with direct speech. If it is dialogue, i.e. if there are at least two speaking persons, the author must differentiate them in some way, for example, in their sentence length. Hence dialogue has two independent parts which must not be mixed. If there are more speaking persons, then each speaker's words must be evaluated separately. This kind of research might be of great interest and use for the purposes of analyzing a single work from a literary point of view. For our particular purposes, namely for corroborating a variant of Sherman's law, it would play a merely subordinate role. The results of dialogue and narrative parts are given below consecutively. In respect of direct speech, there are a dozen texts that contain no dialogue data (ND) and as many texts that do not have enough data to fit the Hyperpascal (NED), and there are four texts where the fitting failed (FF).

Writer	Text	Size	K	М	Q	DF	X^2	Р	Interv.
akutagawa	giwaku	44	FF						
akutagawa	jigokuhen	114	0.1816	0.1033	0.4837	4	1.27	0.87	7
akutagawa	kage	116	0.1826	0.1846	0.5044	3	2.25	0.52	7
akutagawa	kaikano	188	20.2672	3.6874	0.2500	9	15.87	0.07	9
akutagawa	kataki	36	6.2749	0.4248	0.1614	2	0.40	0.82	5
akutagawa	kuranosuke	79	22.9651	1.448374	0.1061	3	0.47	0.93	7
akutagawa	oritsuto	462	0.2653	0.121514	0.3137	2	2.09	0.35	7
akutagawa	rashom	26	1.3298	0.393276	0.5471	4	5.08	0.28	5
akutagawa	umano	132	0.1818	0.049125	0.4942	4	10.92	0.03	5
ango	ishino	NED							
arishima	chiisaki	NED							
arishima	hitofusano	35	FF						
arishima	kajito	53	2.2645	1.3530	0.3170	1	0.30	0.59	7

Table 4Direct speech (Intervals 3, 5, 7, 9, 11)

38

M. Ishida, K. Ishida

50			101	. 15111000, 11.	Istitud				
arishima	kankan	37	1.5100	1.2894	0.6497	5	5.14	0.40	5
arishima	oyako	199	0.4421	0.2238	0.5669	6	2.07	0.91	7
dazai	aitobi	298	0.4143	0.3265	0.6619	10	12.99	0.22	5
dazai	joseito	58	2.5983	1.8394	0.5290	4	3.86	0.43	3
dazai	kamome	122	1.1527	1.2311	0.5092	3	4.83	0.18	7
dazai	kashoku	209	0.1433	0.0780	0.4593	4	9.23	0.06	5
dazai	kirigirisu	NED							
dazai	kotenfu	187	0.2690	0.1160	0.7351	13	18.14	0.15	3
dazai	merosu	168	0.4932	0.1373	0.3484	3	0.77	0.86	5
dazai	osan	96	1.7210	3.2101	0.5548	1	2.95	0.086	9
dazai	oto	38	0.7478	0.7053	0.6608	4	5.18	0.27	3
dazai	sado	102	1.1612	1.2352	0.4033	1	0.76	0.38	7
dazai	ubasute	208	0.0723	0.0428	0.6776	10	14.39	0.16	3
	chizu	117	4.1328	1.9360	0.5181	7	4.30	0.75	5
hirabayashi		184	1.1526	0.5655	0.5887	8	1.03	0.998	5
hojo	gantai	39	0.6168	0.4457	0.5251	3	1.52	0.68	5
hori	banka	54	3.1609	0.9597	0.2349	1	0.13	0.72	7
hori	hanao	31	0.3769	0.1168	0.6588	6	5.96	0.43	3
hori	hono	152	1.5339	0.7042	0.7066	13	9.58	0.73	7
hori	seikazoku	57	1.7604	0.4201	0.4760	5	2.21	0.82	3
hori	tabino	NED	1.7004	0.4201	0.4700	5	2.21	0.02	5
itakura	goshiki	NED							
itakura	C	NED							
	haruno	-							
itakura	yamato	NED	1 5 5 0 1	0.2012	0.4500	5	2.24	0.66	5
ito	hamagiku	84	1.5591	0.3012	0.4500	5	3.24	0.66	5 7
ito	koroku	111	0.0454	0.0180	0.4796		1.60	0.66	
ito	kyonen	35	0.7758	0.1511	0.4300	2	0.75	0.69	5 3
ito	nanako	29	15.9699	1.2484	0.1563	3	1.16	0.76	
ito	nogiku	393	0.1374	0.0317	0.6467	10	18.21	0.05	5
kajii	deinei	ND							
kajii	fuyuhae	ND							
kajii	koubi	ND							
kajii	remon	ND							
kajii	setsugo	ND							
katai	ippei	95	0.5172	0.1831	0.4502	3	5.89	0.12	3
katai	shojo	57	0.1548	0.0763	0.6293	5	1.62	0.90	5
katai	tokoyo	192	0.3829	0.1211	0.6609	10	10.72	0.38	3
kikuchi	emu	83	0.3832	0.1026	0.4789	3	2.715	0.44	5
kikuchi	seni	85	1.715	0.2063	0.1747	1	1.29	0.26	11
kikuchi	shimabara	214	0.3771	0.1867	0.5792	7	12.26	0.09	5
kikuchi	shusse	34	0.0994	0.0165	0.4302	2	0.34	0.84	5
kikuchi	wakasugi	11	FF						
koda	shonen	ND							
kuroshima	ana	108	0.4544	0.1806	0.3687	1	4.18	0.04	5
kuroshima	dempo	80	0.6002	0.5297	0.6574	6	5.59	0.47	5
kuroshima	mogura	153	38.946	9.1844	0.2144	7	2.38	0.94	3
			0.1098	0.0206	0.5401	3	5.23	0.16	5
	mon	62	0.1090	0.0200	0.3401	5	5.25	0.10	5

kuroshima	sato	68	0.2488	0.0922	0.6740	6	14.66	0.02	3
kuroshima		61	1.4061	0.2862	0.2784	1	0.96	0.02	5
kuroshima	zensho	74	2.3327	2.6170	0.7587	8	3.02	0.93	3
makino	kinada	89	0.5892	0.1421	0.7448	12	14.78	0.25	3
makino	tsurube	157	1.5685	1.3012	0.5458	5	7.30	0.20	7
minakami	yamanote	102	0.1527	0.0598	0.2744	1	0.40	0.53	7
mishima	hashi	74	0.3204	0.1001	0.3467	1	4.76	0.03	5
miyamoto	akarui	113	1.7018	1.5909	0.6519	6	2.97	0.81	3
miyazawa	karasu	62	0.4617	0.2967	0.5867	4	2.86	0.58	3
murai	sobano	ND	011017	0.2207	0.0007			0.00	0
oda	keiba	NED							
oda	osaka	NED							
ogai	asobi	65	4.1224	5.8304	0.7282	3	6.05	0.11	5
ogai	futarino	56	1.7175	1.4188	0.6062	4	4.63	0.33	5
ogai	kazui	65	0.2298	0.1528	0.5261	3	3.02	0.39	5
ogai	niwatori	175	0.9699	1.0521	0.4804	3	8.79	0.03	7
ogai	shokudo	102	1.6770	0.5108	0.4607	5	3.40	0.64	7
okamoto	karei	92	0.0462	0.0101	0.7534	10	8.29	0.60	3
okamoto	kingyo	198	0.0338	0.0243	0.7854	13	22.56	0.05	
okamoto	rigyo	52	2.0128	1.6204	0.5564	2	3.00	0.22	<u>3</u> 5
okamoto	sushi	78	0.3798	0.1484	0.4783	3	5.49	0.14	5
okamoto	tokaido	102	0.0672	0.0225	0.8015	14	7.20	0.93	3
sasa	kikansha	102	FF						
sasa	midori	53	3.3945	0.7119	0.3239	3	0.74	0.86	7
shimazaki	bumpai	120	1.6281	0.2471	0.2613	2	1.54	0.46	5
shimazaki	fune	34	0.3927	0.1668	0.5610	3	2.87	0.41	5
shimazaki	mebae	142	1.4990	0.8369	0.6176	8	11.57	0.17	3
shimazaki	namiki	156	0.4712	0.1523	0.4678	5	4.20	0.52	5
shimazaki	shishu	33	2.9693	0.5955	0.3710	3	1.93	0.59	5
shiraki	saite	38	0.3329	0.0478	0.5619	4	4.63	0.33	3
soseki	buncho	NED							7
soseki	hennaoto	28	0.3773	0.2522	0.5495	2	0.56	0.76	5
soseki	kotonone	375	0.0813	0.0264	0.6194	9	3.38	0.95	5
soseki	sakubutsu	ND							7
soseki	tegami	52	35.634	2.1977	0.0910	4	3.59	0.46	3
suzu	ogon	115	2.4353	0.1166	0.2720	3	1.84	0.61	5
takiji	haha	83	0.6368	0.3612	0.6280	6	10.18	0.12	5
takiji	yukino	174	0.6376	0.5780	0.4857	4	4.2	0.38	3
unno	daino	200	0.8300	0.3943	0.5754	7	2.3	0.94	5
unno	kagaku	NED							7
unno	kibutsu	216	1.3625	1.0254	0.7349	14	9.89	0.77	3
unno	neon	226	0.2116	0.1524	0.6677	9	4.54	0.87	5
unno	tsuki	245	0.1203	0.0556	0.6774	10	6.17	0.80	3
watanabe	akai	NED							
watanabe	aruhaha	ND							
watanabe	shohai	ND							
watanabe	uso	164	0.6077	0.5130	0.5353	5	3.28	0.66	7
yamada	musashino	185	0.4815	0.5999	0.6410	6	5.24	0.51	7

M. Ishida, K. Ishida

yamashita	ruten	90	3.2763	0.3158	0.3972	6	7.10	0.31	7
yokomitsu	jikan	ND							
yokomitsu	kikaiy	ND							
yumeno	koko	137	0.3294	0.2449	0.8120	16	16.59	0.41	3

Table 5Narrative (Intervals 3, 5, 7, 9, 11)

Writer	Text	Size	K	М	0	DF	X^2	Р	
akutagawa		232	3.2508	0.7474	0.4755	9	11.81	0.22	7
akutagawa	-	412	1.7096	0.3189	0.6290	13	26.62	0.01	7
akutagawa	Ĭ	217	12.0019	0.8216	0.2260	7	11.47	0.12	5
akutagawa	Ŭ	110	1.4427	0.2013	0.5610	7	9.97	0.19	7
akutagawa		249	527.7755	1.9709	0.0087	7	13.24	0.07	5
	kuranosuke	139	5.9010	0.3954	0.3701	9	2.28	0.99	5
akutagawa		503	FF						
akutagawa		134	FF						
akutagawa		242	11.2705	0.2983	0.15839	5	7.36	0.20	5
ango	ishino	318	0.1412	0.0388	0.7412	13	14.82	0.32	7
arishima	chiisaki	297	3.9009	1.1110	0.6215	17	18.79	0.34	3
arishima	hitofusano	142	2.0363	0.2829	0.5584	10	4.81	0.90	5
arishima	kajito	254	0.5221	0.1362	0.5169	6	3.56	0.74	7
arishima	kankan	266	0.3565	0.0729	0.6264	9	6.06	0.73	7
arishima	oyako	361	4.0829	0.9981	0.6000	17	9.78	0.91	3
dazai	aitobi	156	0.5603	0.3690	0.5256	5	4.85	0.43	7
dazai	joseito	930	0.2664	0.1216	0.8011	25	38.53	0.04	3
dazai	kamome	338	0.1819	0.0760	0.4907	5	7.05	0.22	7
dazai	kashoku	487	0.0963	0.0275	0.6607	11	17.94	0.08	5
dazai	kirigirisu	299	0.3799	0.0815	0.7082	14	12.30	0.58	5
dazai	kotenfu	257	0.4089	0.1571	0.6982	12	14.66	0.26	3
dazai	merosu	303	0.3224	0.0806	0.5184	6	4.00	0.68	5
dazai	osan	116	0.3899	0.1703	0.8125	17	33.73	0.01	7
dazai	oto	121	0.2934	0.1345	0.5840	6	8.65	0.19	7
dazai	sado	458	0.2872	0.0790	0.4953	6	11.47	0.07	5
dazai	ubasute	400	0.4038	0.2527	0.4846	5	14.88	0.01	7
hashimoto	chizu	261	0.6289	0.1289	0.6293	10	11.99	0.29	7
hirabayashi	yamabuki	253	0.8716	0.0803	0.6629	13	5.46	0.96	5
hojo	gantai	153	2.0267	0.2963	0.5915	11	7.67	0.74	5
hori	banka	258	6.6566	2.5129	0.6290	19	14.07	0.78	3
hori	hanao	351	1.1630	0.1029	0.8032	29	35.43	0.19	3
hori	hono	90	0.1972	0.0369	0.8306	17	14.45	0.63	5
hori	seikazoku	378	1.7554	0.3774	0.7199	20	35.53	0.02	3
hori	tabino	217	0.2795	0.0572	0.7479	15	16.16	0.37	7
itakura	goshiki	532	0.5177	0.0946	0.3713	4	3.66	0.45	7
itakura	haruno	214	9.7424	0.7743	0.1661	4	1.47	0.83	5
itakura	yamato	309	0.6158	0.1083	0.5859	9	11.63	0.23	5
ito	hamagiku	258	2.5754	0.3032	0.4484	8	2.97	0.94	5

40

ito	koroku	170	1.5610	0.0512	0.4003	6	3.13	0.79	7
ito	kyonen	431	1.6990	0.1969	0.3002	4	9.27	0.05	9
	nanako	254	2.8372	0.2986	0.4302	8	7.76	0.05	5
ito	nogiku	582	1.8452	0.2980	0.4589	8	9.78	0.40	7
kajii	deinei	222	5.1011	0.4674	0.3167	7	10.22	0.18	5
kajii	fuyuhae	305	2.3021	0.3570	0.6201	15	9.47	0.85	3
kajii	koubi	187	3.7351	0.5448	0.3925	7	14.88	0.03	5
kajii	remon	134	1.360	0.1093	0.7077	15	18.87	0.22	3
kajii	setsugo	180	0.6015	0.1389	0.7129	13	16.01	0.25	3
	ippei	416	0.5105	0.0858	0.3799	4	3.87	0.42	7
katai	shojo	209	0.5526	0.1179	0.8481	27	22.16	0.73	3
katai	tokoyo	443	1.9931	0.2240	0.6600	18	13.79	0.74	3
kikuchi	emu	185	0.2209	0.0580	0.7372	9	13.21	0.15	5
kikuchi	seni	212	2.3085	0.1345	0.3451	5	4.99	0.42	7
kikuchi	shimabara	190	FF	0.10 10	0.0 10 1	0	1.55	0.12	,
kikuchi	shusse	194	1.5669	0.1836	0.4743	7	6.802	0.45	7
kikuchi	wakasugi	210	FF	0.1000	0.17.10	,	0.002	01.10	,
koda	shonen	114	0.1233	0.0110	0.8329	17	20.18	0.27	5
	ana	327	1.9025	0.2617	0.4512	8	4.22	0.84	5
kuroshima		136	1.8996	0.3230	0.6698	15	12.16	0.67	3
	mogura	501	3.5743	0.2388	0.3218	7	12.05	0.10	5
	mon	104	1.5992	0.1087	0.3088	3	3.06	0.38	7
	nusumu	268	4.0326	0.2841	0.4515	11	8.64	0.66	3
	sato	99	0.0074	0.0010	0.5192	4	1.76	0.78	7
kuroshima	tongun	191	2.4103	0.1772	0.4365	8	8.02	0.43	5
	zensho	242	1.9764	0.1880	0.4369	7	3.49	0.84	5
makino	kinada	190	1.3305	0.5076	0.7135	12	21.60	0.04	7
makino	tsurube	204	0.5034	0.2017	0.5960	8	13.21	0.11	9
minakami	yamanote	285	3.1271	0.6449	0.4968	10	15.85	0.10	7
mishima	hashi	285	0.9655	0.1537	0.6460	12	10.05	0.61	5
miyamoto	akarui	184	11.9772	1.3814	0.1700	4	8.57	0.07	7
miyazawa	karasu	103	0.0022	0.0014	0.8347	17	28.06	0.04	3
murai	sobano	179	1.6458	0.1299	0.7071	18	33.89	0.01	5
oda	keiba	228	0.1002	0.0215	0.7602	15	25.33	0.05	7
oda	osaka	162	0.2893	0.0806	0.7980	16	28.82	0.03	5
ogai	asobi	308	3.2854	0.3025	0.2594	4	1.79	0.77	7
ogai	futarino	356	6.6858	1.4855	0.4836	14	12.42	0.57	3
ogai	kazui	206	1.3157	0.1693	0.4771	7	6.69	0.46	7
ogai	niwatori	587	13.1228	0.7404	0.1021	4	4.21	0.38	7
ogai	shokudo	91	0.2776	0.0832	0.7804	13	9.53	0.73	3
okamoto	karei	194	3.5711	0.6043	0.4678	9	12.45	0.19	5
okamoto	kingyo	632	3.4650	0.9013	0.5850	16	24.03	0.09	5
okamoto	rigyo	119	0.2577	0.0490	0.8499	22	21.25	0.51	3
okamoto	sushi	288	0.7983	0.1455	0.5572	8	8.21	0.41	7
okamoto	tokaido	276	0.1071	0.0433	0.7016	12	14.70	0.26	7
sasa	kikansha	115	20.8736	0.1578	0.0819	4	1.85	0.76	5
sasa	midori	74	1.4028	0.1152	0.4674	5	4.05	0.54	7
shimazaki	bumpai	377	1.7282	0.5855	0.6445	14	23.06	0.06	5

M. Ishida, K. Ishida

shimazaki	fune	320	3.1831	0.4953	0.6151	17	19.83	0.28	3
shimazaki	mebae	739	1.4973	0.1784	0.3944	6	1.75	0.94	7
shimazaki	namiki	217	0.2989	0.0960	0.5413	6	3.64	0.73	7
shimazaki	shishu	283	1.1646	0.2866	0.4810	7	6.08	0.53	7
shiraki	saite	198	2.2885	0.2657	0.4015	6	3.51	0.74	7
soseki	buncho	409	0.8612	0.0815	0.4941	8	4.32	0.83	5
soseki	hennaoto	82	0.3567	0.2955	0.7203	8	7.60	0.47	5
soseki	kotonone	401	3.2625	0.6202	0.5749	15	17.52	0.29	3
soseki	sakubutsu	183	0.0463	0.0070	0.7325	12	6.37	0.90	5
soseki	tegami	211	2.2489	0.3751	0.5131	9	13.03	0.16	7
suzu	ogon	324	10.4524	0.5815	0.0638	2	0.89	0.64	11
takiji	haha	211	0.7726	0.3625	0.6113	8	16.23	0.04	7
takiji	yukino	565	0.2493	0.0695	0.4080	5	6.25	0.28	7
unno	daino	289	1.1157	0.1607	0.5731	10	11.29	0.34	5
unno	kagaku	108	1.0242	0.1328	0.5156	6	2.15	0.91	7
unno	kibutsu	250	1.7748	0.2114	0.4305	7	13.68	0.06	7
unno	neon	182	1.1837	0.1312	0.4246	5	7.58	0.18	7
unno	tsuki	260	1.7667	0.2264	0.4269	7	15.37	0.03	7
watanabe	akai	194	2.1726	0.5709	0.5182	8	5.25	0.73	5
watanabe	aruhaha	120	0.8454	0.0944	0.5616	7	8.00	0.33	7
watanabe	shohai	298	0.5499	0.1965	0.6890	12	9.22	0.68	5
watanabe	uso	136	0.7294	0.0809	0.5565	7	2.46	0.93	7
yamada	musashino	166	0.3080	0.0362	0.7765	15	9.88	0.83	5
yamashita	ruten	26	1.0755	0.2078	0.5730	5	8.74	0.12	9
yokomitsu	jikan	150	3.6477	0.6335	0.6743	18	19.55	0.36	7
yokomitsu	kikaiy	244	FF						
yumeno	koko	302	2.6289	0.2347	0.4816	10	7.12	0.71	5

Results

Though there are several texts (complete, dialogue, narrative) which do not accord with the Hyperpascal distribution in any case of our different pooling intervals, the overall result satisfactorily indicates that the law of sentence length distributions can also be effectively applied to Japanese. Each individual text which does not conform to the law must be studied separately. If there had been some kind of regulations or restrictive conditions in their creation, and if only these could be detected and allowed for in the analysis, it would be unlikely that such deviations should occur. In the considerable cases of direct speech, testing itself was impracticable simply because there was too little or no dialogue data. The first step in a new direction has been taken, and further development could be expected should sentence lengths be measured by counting the number of clauses. This project will follow shortly.

Writers and Works

Ryunosuke Akutagawa: Giwaku, Jigokuhen, Kage, Kaika no Otto, Aru Katakiuchi no Hanashi, Aruhi no Oishi Kuranosuke, Oritsu to Kora, Rashomon, Uma no Ashi Sakaguchi Ango: Ishi no Omohi Takeo Arishima: Chiisaki mono he, Hitofusa no Budo, Kaji to Pochi, Kankan Mushi, Oyako

42

Osamu Dazai: Ai to Bi nitsuite, Joseito, Kamome, Kashoku, Kirigirisu, Koten Fu, Hashire Merosu, Osan, Oto nitsuite, Sado, Ubasute Goro Hashimoto: Chizu ni nai Machi Hatsunosuke Hirabayashi: Yamabuki Cho no Satsujin Tamio Hojo: Gantai Ki Tatsuo Hori: Banka, Hana wo moteru Onna, Hoo no saku Koro, Sei Kazoku, Tabi no E Katsunobu Itakura: Goshiki Onsen Suki Nikki, Haru no Kamikochi he, Yama to Yuki no Nikki Sachio Ito: Hamagiku, Kooroku, Kyonen, Nanako, Nogiku no Haka Motojiro Kajii: Deinei, Fuyu no Hae, Kobi, Remon, Setsugo, Katai Tayama: Ippeisotsu, Shojo Byo, Tokovo Govomi Kan Kikuchi: M Koshaku to Shashinshi, Seni no Tachiba, Shimabara Shinju, Shusse, Wakasugi Saiban Cho Rohan Koda: Shonen Jidai Denji Kuroshima: Ana, Dempo, Mogura to Rakuban, Mon, Nusumu Onna, Sato Dorobo, Tongun, Zensho Shinichi Makino: Kinada Mura, Tsurube to Gekko to Takitaro Minakami: Yamanote no Ko Yukio Mishima: Hashi Zukushi Yuriko Miyamoto: Akarui Kaihin Kenji Miyazawa: Karasu no Hokutoshichisei Masavoshi Murai: Soba no Aji to Kuikata Mondai Sakunosuke Oda: Keiba, Osaka Hakken Ogai Mori: Asobi, Futari no Tomo, Kazuisuchika, Niwatori, Shokudo Kanoko Okamoto: Karei, Kingyo Ryoran, Rigyo, Sushi, Tokaido Gojusantsugi Toshiro Sasaki: Kikansha, Midori no Me Toson Shimazaki: Bumpai, Fune, Mebae, Namiki, Shishu Shizu Shiraki: Saite yuku Hana Soseki Natsume: Buncho, Henna Oto, Koto no Sorane, Sakubutsu no Hihyo, Tegami Miekichi Suzuki: Ogon Cho Takiji Kobayashi: Hahatachi, Yuki no Yoru Juza Unno: Daino Shujutsu, Kagaku ga Heso wo mageta Hanashi, Kibutsudo Jiken, Neon Yokocho Satsujin Jiken, Tsuki no Sekai Tankenki On Watanabe: Akai Entotsu, Aru Haha no Hanashi, Shohai, Uso Bimvo Yamada: Musashino Risaburo Yamashita: Ruten Riichi Yokomitsu: Jikan, Kikai Kyusaku Yumeno: Kokonatto no Mi

(All the texts above were downloaded from <u>http://www.aozora.gr.jp/index.html</u>, with the exception of Yukio Mishima's "Hashi Zukushi." This one, still in copyright, was from *Shincho-Bunko no 100 Satsu: CD-ROM Version*, 1995.)

References

Altmann, Gabriel (1988). Verteilungen der Satzlängen. Glottometrika 9, 147–169.
 Altmann, Gabriel; Köhler, Reinhard (1996). "Language Forces" and synergetic modelling of language phenomena. Glottometrika 15, 62-76.

- Arai, Hiroshi (2001). On lognormal distributions of sentence length. *Hitotsubashi University Journal* 125(3), 75–100. (In Japanese).
- **Cohen, Jacob** (1988). *Statistical Power Analysis for the Behavioral Sciences*. New York: Lawrence Erlbaum Associates, 2nd edition.
- Fucks, Walther (1968). Nach allen Regeln der Kunst. Stuttgart: Deutsche Verlagsanstalt.
- Grotjahn, Rüdiger; Altmann, Gabriel (1993). Modelling the distribution of word length: some methodological problems. In: Reinhard Köhler; Burghard B. Rieger (eds.), *Contributions to Quantitative Linguistics: 141-153*. Dordrecht/Boston/London: Kluwer Academic Publishers.
- Kelih, Emmerich; Peter Grzybek (2004). Häufigkeit von Satzlängen: Zum Faktor der Intervallgröße als Einflussvariable. *Glottometrics* 8, 23–41.
- Kelih, Emmerich; Peter Grzybek (2005). Satzlänge: Definition, Häufigkeiten, Modelle. Zeitschrift für Computerlinguistik und Sprachtechnologie 20(2), 31–51.
- Kjetsaa, Geir (1978). The Battle of The Quiet Don: Another Pilot Study. *Computers and the Humanties 11, 341–346.*
- Mačutek, Jan; Altmann, Gabriel (2007). Discrete and continuous modelling in quantitative linguistics. *Journal of Quantitative Linguistics 14(1), 81-91*.
- **Mizutani, Shizuo** (1957). Notes to distributions of sentence length. *Mathematical Linguistics, 2, 22–23.* (In Japanese).
- Niehaus, Brigitta (1997). Untersuchung zur Satzlängenhäufigkeit im deutschen. *Glottometrika 16, 213-275.*
- Sasaki, Kazue (1976). On distributions of sentence length. *Mathematical Linguistics* 78, 13–22. (In Japanese).
- Sichel, H.S. (1974). On a distribution representing sentence-length in written prose. *Journal* of the Royal Statistical Society. Vol. 1, No. 137, 25–34.
- Sichel, H.S. (1975). On a distribution law for word frequencies. Journal of the American Statistical Association, Vol. 70, No. 351, 542–547.
- Sigurd, Bengt; Mats Eeg-Olosson (2004). Word length, sentence length and frequency Zipf revisited. *Studia Linguistica, Vol. 1, No. 58, 37–52.*
- **Strehlow, Michael** (1997). *Satzlängen in pädagogischen Fachartikeln des 19. Jahrhunderts.* Staatsexamensarbeit, Göttingen.
- Williams, C. B. (1940). A note on the statistical analysis of sentence-length as a criterion of literary style. *Biometrika 31, 356–361*.
- Wittek, Martin (2001). Zur Entwicklung der Satzklänge im gegenwärtigen Deutschen. In: Best, K.-H. (ed.), Häufigkeitsverteilungen in texten: 219-247. Trier: WVT.
- Yasumoto, Biten (1965). Introduction to Sentence Psychology, Tokyo: Seishin-Publisher.(In Japanese).
- Yasumoto, Biten (1966). Frontier of Sentence Psychology. Tokyo: Seishin-Publisher. (In Japanese).
- Yule, George Udny (1939). On sentence-length as a statistical characteristic of style in prose: with application to two cases of disputed authorship. *Biometrika 30, 363–390*.
- Zipf, George K. (1949). Human behavior and the principle of least effort. Cambridge: Addison-Wesley.